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Interpolation Coherence Failures of coherence

Equational deductive interpolationCraig interpolation: if φ → ψ, then there is a χ in the vocabularycommon to φ and ψ, such that φ → χ and χ → ψ.A version for equations and varieties is below.DefinitionA variety V admits deductive interpolation if for any finite sets ofvariables x, y, z and any finite set of equations Σ(x, y) ∪ {ε(y, z)}satisfying Σ |=V ε, there exists a finite set of equations Π(y) suchthat Σ |=V Π and Π |=V ε.
Equivalent formulation
V admits deductive interpolation if and only if for any finite sets
x, y and finite set of equations Σ(x, y), there exists a set (ingeneral not finite) of equations Π(y) such that for any equation
ε(y, z): Σ |=V ε ⇐⇒ Π |=V ε.
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Uniform deductive interpolationPitts uniform interpolation for intuitionistic logic: the interpolant
χ only depends on the common vocabulary of φ and ψ.A version for equations and varieties is below.Definition
V admits (right) uniform deductive interpolation if for any finitesets of variables x, y, z and any finite set of equations Σ(x, y)there exists a finite set of equations Π(y) such that Σ |=V Π andfor any equation ε(y, z):

Σ |=V ε implies Π |=V ε.
Equivalent formulation
. . . there exists a finite set of equations Π(y) such that for anyequation ε(y, z): Σ |=V ε ⇐⇒ Π |=V ε.
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Deductive interpolation and congruences
van Gool, Metcalfe and Tsinakis showed that V admitsdeductive interpolation if and only if the following diagram,involving lattices of congruences, commutes.

Con F(x, y) Con F(y)
Con F(x, y, z) Con F(y, z)

i−1
j∗

k−1
l∗

Here i, j, k, l are natural identity embeddings, j∗ and l∗ arecorresponding natural extensions of compact congruences, and
i−1, k−1 are the corresponding natural restrictions ofcongruences.

But i−1, k−1 are not always compact.
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Connection to coherenceTo make them always compact something slightly less thanuniform deductive interpolation is needed.Theorem (vGMT2017)
The following are equivalent:1. The compact lifting of any homomorphism between finitely

presented algebras in V has a right adjoint.2. For any finite sets x, y and compact congruence Θ on F(x, y),
the congruence Θ ∩ F (y)2 on F(y) is compact.3. For any finite sets x, y and finite set of equations Σ(x, y),
there exists a finite set of equations Π(y) such that for any
equation ε(y), we have Σ |=V ε ⇐⇒ Π |=V ε.

I (3) is implied by uniform deductive interpolation: ε(y) is aspecial case of ε(y, z).
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Connection to coherenceCondition (2) of the previous theorem

restated in terms of quotientalgebras.

I For any finite sets x, y and compact congruence Θ on F(x, y),the congruence Θ ∩ F (y)2 on F(y) is compact.

I For any finitely presented algebra B, certain finitelygenerated subalgebra of B is also finitely presented.A little more is true.Theorem (Metcalfe, TK)
The following are equivalent:1. For any finite sets x, y and compact congruence Θ on F(x, y),

the congruence Θ ∩ F (y)2 on F(y) is compact.2. Finitely generated subalgebras of finitely presented algebras
in V are themselves finitely presented.
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Coherence and model completenessDefinitionA class of structures C is coherent if for any A,B ∈ C we have:
I if B is finitely presented, and A ≤ B is finitely generated,then A is finitely presented.
I Wheeler has shown that coherence is closely related toexistence of a model companion of the first-order theory of C.
I To be precise, Wheeler’s results imply that the following areequivalent for a variety V with AP:

I Th(V) has a model companion,
I Th(V) has a model completion,
I V is coherent and V satisfies a weak form of CEP(conservative CEP for finite presentations).

I Very recently Metcalfe and Reggio characterised modelcompletions for varieties of algebras in a much nicer way.
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Examples and non-examples
I Every locally finite variety is coherent.
I The variety of Heyting algebras is coherent (follows fromPitt’s interpolation thorem for intuitionistic propositionallogic).
I The varieties of Abelian groups, lattice-ordered Abeliangroups, and MV-algebras are coherent.
I The variety of all groups is not coherent (existence of afinitely generated recursively presented group that is notfinitely presented + Higman’s Theorem).
I For any variety with Higman Property, coherence isequivalent to:

I Every finitely generated and recursively presented algebra isfinitely presented. (Metcalfe, TK).

I We found a criterion that produces a lot failures of coherencein ordered algebras.
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A general criterionTheorem
Let V be a coherent variety of algebras with a term-definable
order, and a term t(x, u) satisfying

V |= t(x, u) ≤ x and V |= x ≤ y ⇒ t(x, u) ≤ t(y, u).
Suppose also that V satisfies the following fixpoint embedding
condition with respect to t(x, u):(FE) For any finitely generated A ∈ V and a, b ∈ A, there exists

B ∈ V such that A is a subalgebra of B and
∧
k∈N tk (a, b̄)

exists in B, satisfying∧
k∈N

tk (a, b̄) = t( ∧
k∈N

tk (a, b̄), b̄).
Then t is n-potent (with respect to x) in V for some n ∈ N.



Interpolation Coherence Failures of coherence

Applying the criterion
I If we have a variety V satisfying the fixpoint embeddingcondition (FE), all we need to do is to find a term that is not
n-potent for any n.

I Satisfying (FE) may not be easy. It can be shown howeverthat varieties closed under canonical extensions of theircountable members, satisfy it. For example,
I Lattices are canonical. Consider the term

t(x, u, w) = (u ∨ (w ∧ (u ∨ x))) ∧ x.
For each n ∈ N, there is a lattice Hn with 8 + 4n elements,which falsifies tn(x, u, w) ≤ tn+1(x, u, w).Corollary (known since ’80s)

Let V be a variety of lattices closed under canonical extensions
and such that Hn ∈ V for all n ∈ N. Then V is not coherent.
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More negative results
Theorem
Let V be a lattice-based variety of algebras, canonical, and
having a term-operation which is not n-potent for any n. Then V
is not coherent, does not admit uniform deductive interpolation
and Th(V) does not have model completion.

Examples:
I Varieties of residuated lattices. All “basic” ones: integral,commutative, involutive, square-increasing, distributive,semilinear, Hamiltonian, etc.
I Varieties of modal algebras. In particular any countablycanonical variety whose Kripke frames admit all finite chains.
I Varieties of BAOs: countably canonical ones without EDPC.
I The variety of double Heyting algebras.
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Thank you!
I W.H. Wheeler, Model-companions and definability inexistentially complete structures, Israel J. Math., vol. 25,no. 3.
I Kharlampovich, Sapir, Algorithmic problems in varieties,

Internat. J. Algebra Comput., (1995),
I S. van Gool, G. Metcalfe, C. Tsinakis, Uniform interpolationand compact congruences, Ann. Pure Appl. Logic, vol. 168.
I T.K., G. Metcalfe, Coherence in Modal Logic, Advances in

Modal Logic, Vol. 12, College Publications 2018.
I T.K., G. Metcalfe, Uniform interpolation and coherence, Ann.

Pure Appl. Logic, Ann. Pure Appl. Logic, vol. 170.



The gadgetΣ = {y ≤ x, x ≈ t(x, u), x ≤ z} and Π = {y ≤ tk (z, u) | k ∈ N}

First, we prove that for any equation ε(y, z, u),
Σ |=V ε(y, z, u) ⇐⇒ Π |=V ε(y, z, u).

I Σ |=V Π, so ⇐ direction is immediate.
I Suppose the converse does not hold. Then, there is a finitelygenerated A ∈ V and elements a, b, c of A such that

A |= a ≤ tk (b, c) for every k ∈ N, but A 6|= ε(a, b, c).
I By FE, A embeds into some B such that ∧

k∈N tk (b, c̄) existsin B and is a fixpoint for t.
I Now x does not occur in t or Π, so taking xB = ∧

k∈N tk (b, c̄)makes B a countermodel to Σ |=V ε(y, z, u).

Contradiction.
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The gadget
I We have shown Σ |=V ε(y, z, u) ⇐⇒ Π |=V ε(y, z, u).

I By coherence, there exists a finite ∆(y, z, u) such thatΣ |=V ε(y, z, u) ⇐⇒ ∆ |=V ε(y, z, u).
I By standard arguments, ∆ can be taken to be the singleton
{y ≤ tm(z, u)} for some fixed m.

I But we have Σ |=V y ≤ tm+1(z, u).
I Therefore, {y ≤ tm(z, u)} |=V y ≤ tm+1(z, u).
I This holds throughout the variety, so
V |= tm(z, u) ≤ tm+1(z, u)

I And by monotonicity of t, we get V |= tm(z, u) ≈ tm+1(z, u).
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