Fraïssé-type theorem for polymorphism-homogeneous structures

Bojana Pantić

Faculty of Sciences, University of Novi Sad, Serbia

AAA100

February 5, 2021

Joint work with M. Pech

B. Pantić (University of Novi Sad)

Fraïssé-type Thm for PH

Feb 5, 2021 1/13

Classical tools

 σ – a countable relational signature

A class of σ -structures \mathscr{C} has:

• JEP – if for all $A, B \in \mathscr{C}$ there exists a $C \in \mathscr{C}$: $A \hookrightarrow C$ and $B \hookrightarrow C$.

• **AP** – if for all **A**, **B**₁, **B**₂ $\in \mathscr{C}$ and all $f_1 : \mathbf{A} \hookrightarrow \mathbf{B}_1$, $f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$ there exist a $\mathbf{C} \in \mathscr{C}$, and $g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{C}$ and $g_2 : \mathbf{B}_2 \hookrightarrow \mathbf{C}$ such that $g_1 \circ f_1 = g_2 \circ f_2$.

$$\begin{array}{c} \mathbf{B}_2 & \stackrel{g_2}{\longleftarrow} & \mathbf{C} \\ \begin{array}{c} f_2 \\ \mathbf{A} & \stackrel{f_1}{\longrightarrow} & \mathbf{B}_1 \end{array} \end{array}$$

Let \mathcal{U} be a σ -structure.

Age(\mathcal{U}) = {**A** | **A** is finite & **A** $\hookrightarrow \mathcal{U}$ }

.

 A *σ*-structure is called **homogeneous** if every isomorphism between its finite substructures extends to an automorphism.

Theorem (Fraïssé 1954)

(1) \mathcal{U} is countable & homogeneous \implies Age(\mathcal{U}) has the AP.

- (2) If \mathscr{C} is a class of finite σ -structures, closed under isomorphisms and substructures, with countably many isomorphism types, having the JEP and AP then there exists a countable homogeneous \mathcal{U} with age \mathscr{C} .
- (3) \mathcal{U}, \mathcal{V} countable homogenous σ -structures

$$\operatorname{Age}(\mathcal{U}) = \operatorname{Age}(\mathcal{V}) \implies \mathcal{U} \cong \mathcal{V}.$$

A σ -structure \mathcal{U} is called:

• homomorphism-homogeneous if every local homomorphism of \mathcal{U} extends to an endomorphism of \mathcal{U} .

An *n*-ary **polymorphism** of \mathcal{U} is any homomorphism from $\mathcal{U}^n \to \mathcal{U}$.

• **polymorphism-homogeneous** if every partial polymorphism of \mathcal{U} with finite domain extends to a global polymorphism of \mathcal{U} .

Recall

(Ch. Pech, M. Pech; 2015)

(日) (同) (日) (日) (日)

 \mathcal{U} is polymorphism-homogeneous $\iff \mathcal{U}^n$ is homomorphism-homogeneous, $\forall n > 0$.

Extension properties for HH & PH

A σ -structure \mathcal{U} has:

• the **HEP** if for all $\mathbf{A} \leq \mathbf{B} \in \operatorname{Age}(\mathcal{U})$ and $f: \mathbf{A} \to \mathcal{U}, \exists g: \mathbf{B} \to \mathcal{U}$ extending f.

• the **nPEP** if for all $\mathbf{A} \leq \mathbf{B} \in \operatorname{Age}(\mathcal{U}^n)$ and $f : \mathbf{A} \to \mathcal{U}, \exists g : \mathbf{B} \to \mathcal{U}$ extending f.

 \mathcal{U} has the **PEP** $\iff \mathcal{U}$ has the *n*PEP, $\forall n > 0$.

 \mathcal{U} has the PEP $\iff \mathcal{U}^n$ has the HEP, for all n > 0.

 \mathcal{U} is polymorphism-homogeneous $\iff \mathcal{U}$ has the PEP.

B. Pantić (University of Novi Sad)

Fraïssé-type Thm for PH

The key ingredient

Let \mathscr{C} be a class of finite σ -structures.

 \mathscr{C} has the **HAP** if for all $\mathbf{A}, \mathbf{B}_1, \mathbf{B}_2 \in \mathscr{C}, f_1 : \mathbf{A} \to \mathbf{B}_1$ and $f_2 : \mathbf{A} \hookrightarrow \mathbf{B}_2$, there exists a $\mathbf{D} \in \mathscr{C}, g_1 : \mathbf{B}_1 \hookrightarrow \mathbf{D}$ and a $g_2 : \mathbf{B}_2 \to \mathbf{D}$ such that $g_1 \circ f_1 = g_2 \circ f_2$.

$$\begin{array}{c} \mathbf{B}_2 & \xrightarrow{g_2} & \mathbf{D} \\ f_2 & & g_1 \\ f_2 & & g_1 \\ \mathbf{A} & \xrightarrow{f_1} & \mathbf{B}_1 \end{array}$$

Theorem

(Ch. Pech, M. Pech; 2016)

(1) \mathcal{U} is countable & homomorphism-homogeneous \implies Age(\mathcal{U}) has the HAP.

(2) If \mathscr{C} is a class of finite σ -structures, closed under isomorphisms and substructures, with countably many isomorphism types, having the JEP and HAP then there exists a countable homomorphism-homogeneous \mathcal{U} with age \mathscr{C} .

We are onto something!

Let \mathscr{C} be a class of finite σ -structures and n > 0.

 \mathscr{C} has the **nPAP** if for all $i \in \{1, ..., n\}$, $\mathbf{A}_i, \mathbf{B}_i, \mathbf{C} \in \mathscr{C}$, $f_1 : \mathbf{A} \to \mathbf{C}$ an *n*-ary polymorphism and $f_2 : \mathbf{A} \hookrightarrow \mathbf{B}$, where $\mathbf{A} \leqslant \prod_{i=1}^{n} \mathbf{A}_i$ and $\mathbf{B} \leqslant \prod_{i=1}^{n} \mathbf{B}_i$, there exists a $\mathbf{D} \in \mathscr{C}$, $g_1 : \mathbf{C} \hookrightarrow \mathbf{D}$ and an *n*-ary polymorphism $g_2 : \mathbf{B} \to \mathbf{D}$ such that $g_1 \circ f_1 = g_2 \circ f_2$.

 \mathscr{C} has the **PAP** $\iff \mathscr{C}$ has the *n*PAP, $\forall n > 0$.

$$\begin{array}{cccc}
\mathbf{B} & \stackrel{g_2}{-\cdots} & \mathbf{D} \\
f_2 & & g_1 \\
\mathbf{A} & \stackrel{f_1}{\longrightarrow} & \mathbf{C}
\end{array}$$

 $\operatorname{Age}(\mathcal{U})$ has the PAP \iff $\operatorname{Age}(\mathcal{U}^n)$ has the HAP, for all n > 0.

Theorem

(1) \mathcal{U} is countable & polymorphism-homogeneous \implies Age(\mathcal{U}) has the PAP.

(2) If \mathscr{C} is a class of finite σ -structures, closed under isomorphisms and substructures, with countably many isomorphism types, having the JEP and PAP then there exists a countable, polymorphism-homogeneous \mathcal{U} with age \mathscr{C} .

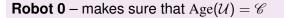
Sketch of the proof - (2):

- \mathscr{C} has PAP $\implies \mathscr{C}$ has the HAP;
- \exists a countable homomorphism-homogenous \mathcal{U} , such that $Age(\mathcal{U}) = \mathscr{C}$.
- Thus, $Age(\mathcal{U})$ has the PAP.
- Overall, \mathcal{U} is polymorphism-homogenous, too!

Bring in the robots!

B. Pantić (University of Novi Sad)

Fraïssé-type Thm for PH



 $\forall n > 0$: **Robot n** – secures *n*-polymorphism-homogeneity

Feb 5, 2021 10/13

< 口 > < 戶

.

How similar do they get?

 $\mathcal{U}, \mathcal{V} - \sigma$ -structures, with $Age(\mathcal{U}) = Age(\mathcal{V})$

 ${\mathcal U} \text{ and } {\mathcal V} \text{ are:}$

H-equivalent if every f: A → V from a finite A ≤ U into V can be extended to g: U → V, and vice versa.

P-equivalent if ∀n > 0, every f: A → Vⁿ from a finite A ≤ Uⁿ into Vⁿ can be extended to g: Uⁿ → Vⁿ, and vice versa.

 \mathcal{U} and \mathcal{V} are *P*-equivalent $\iff \mathcal{U}^n$ and \mathcal{V}^n are *H*-equivalent, $\forall n > 0$

B. Pantić (University of Novi Sad)

 \mathcal{U}, \mathcal{V} – countable σ -structures

Proposition

(Ch. Pech, M. Pech; 2016)

(1) \mathcal{U}, \mathcal{V} are *H*-equivalent $\implies \mathcal{U}$ is homomorphism-homogeneous iff \mathcal{V} is.

(2) \mathcal{U}, \mathcal{V} are homomorphism-homogeneous & Age(\mathcal{U}) = Age(\mathcal{V})

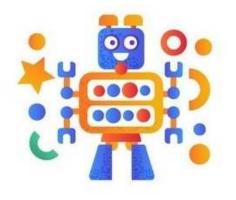
 $\implies \mathcal{U}, \mathcal{V} \text{ are } H\text{-equivalent.}$

Proposition

(1) \mathcal{U}, \mathcal{V} are *P*-equivalent $\implies \mathcal{U}$ is polymorphism-homogeneous iff \mathcal{V} is.

(2) \mathcal{U}, \mathcal{V} are polymorphism-homogeneous & Age(\mathcal{U}) = Age(\mathcal{V}) $\implies \mathcal{U}, \mathcal{V}$ are *P*-equivalent.

Thank you for your attention!



-