Congruence lattices of connected monounary algebras

Lucia Janičková

Joint work with D. Jakubíková-Studenovská

Pavol Jozef Šafárik University in Košice, Slovakia

100th Workshop on General Algebra 5.2.-7.2.2021, online

- \bullet the system of all congruences of an algebra (A,F) forms a lattice, denoted ${\rm Con}(A,F)$
- the system of all congruence lattices of all algebras with the base set A forms a lattice \mathcal{E}_A
- we deal with meet-irreducibility in \mathcal{E}_A for a given finite set A
- all meet-irreducible elements of \mathcal{E}_A are congruence lattices of monounary algebras

- open problem: characterization of all \wedge -irreducible elements in \mathcal{E}_A
- some types of meet-irreducible congruence lattices were described by Jakubíková-Studenovská, Pöschel and Radeleczki (2018); and by Janičková and Jakubíková-Studenovská (2018)
- today, we present necessary and sufficient condition under which Con(A, f) is meet-irreducible in the case when (A, f) is connected algebra (i.e., it contains only one component).

$\left(A,f\right)$ - monounary algebra, A is finite set

- \bullet operation $f\in A^A$ is called ${\bf trivial},$ if it is identity of constant
- an element $x \in A$ is called ${\rm cyclic}$ if it belongs to cycle, otherwise it is called ${\rm noncyclic}$
- let $t_f(a) := \min\{n \in \mathbb{N}_0 : f^n(a) \text{ is cyclic }\}$
- for $k \in \mathbb{N}$ we denote $C_k := \{x \in A : t_f(x) = k\}$
- for $x,y\in A$ let $\theta_f(x,y)$ be the smallest congruence on (A,f) such that $(x,y)\in \theta_f(x,y)$

Definition

A monounary algebra $\left(A,f\right)$ is called connected, if it contains a single cycle.

Definition

A monounary algebra (A, f) is called a *permutation-algebra* if the operation f is a permutation on A.

Definition

A monounary algebra (A,f) is called a permutation-algebra with short tails if <math display="inline">f(x) is cyclic for every $x \in A$

Definition

For every element $x \in A$ such that $t_f(x) = t$, there is a single cyclic element $y \in A$ such that $f^t(x) = f^t(y)$. We will call this element a *colleague* of x and we denote it x'.

Example:

If (A,f) is either a permutation-algebra with short tails or its cycle contains at most 2 elements, then the necessary and sufficient conditions under which $\mathrm{Con}(A,f)$ is meet-irreducible were already proved.

It remains to study monounary algebras (A, f) such that (A, f) contains at least 3 cyclic elements, or it contains an element x such that f(x) is noncyclic.

Preliminary

Definition

Let (A, f) be a connected algebra with the cycle C such that $|C| = n, n \ge 3$. Next, let $C = \{0, 1, \ldots, n-1\}$ where $f(0) = 1, f(1) = 2, \ldots, f(n-1) = 0$. We say that a cyclic element c is *covered* if there exists a noncyclic $x \in A \setminus C_1$ such that c = x'.

Example:

Preliminary

Definition

Further, we denote the canonical decomposition of the number of elements of C as $n = p_1^{\alpha_1} \cdots p_k^{\alpha_k}$; the numbers $p_l^{\alpha_l}$ for $l \in \{1, \ldots, k\}$ are said to be elementary divisors of n. The cycle C is called *covered* if each equivalence class modulo σ , where σ is an elementary divisor of n, contains at least one covered $c \in C$.

Notation

Consider the following two conditions: (*1) the set C is covered, (*2) there exist distinct noncyclic elements $a, b, c, d \in A$ such that $f(a), f(c) \in C$ and f(b) = a, f(d) = c.

Condition (*2):

First, we prove that if either of the conditions (*1), (*2) is not satisfied, then ${\rm Con}(A,f)$ is $\wedge\mbox{-reducible}.$

Necessary condition

Assume that (*1) is not satisfied and that (A, f) is not a permutation algebra. This yields that there are $l \in \{1, \ldots, k\}$ and $i \in C$ such that $c \equiv i \pmod{p_l^{\alpha_l}}$ fails to hold for any covered element $c \in C$. Without loss of generality, let i = 0.

Now we set
$$p = p_l$$
, $\alpha = \alpha_l$, $\beta = \frac{n}{p^{\alpha}}$, $j = p^{\alpha - 1} \cdot \beta$.

We define the following operations on A:

$$g_3(x) := x' + p^{\alpha},$$

$$g_4(x) := x' + \beta$$

for each $x \in A$, and

$$g(x) := \begin{cases} x' + j + 1 & \text{if } x \in C \cup C_1, p^{\alpha} \text{ divides } x', \\ f(x) & \text{otherwise.} \end{cases}$$

We proved that $\operatorname{Con}(A, f) = \operatorname{Con}(A, g_3) \cap \operatorname{Con}(A, g_4) \cap \operatorname{Con}(A, g).$

Proposition

If (A, f) does not satisfy the condition (*1), then Con(A, f) is \wedge -reducible.

Necessary condition

Now assume that the condition (*2) is not valid and that C_2 is nonempty.

Let k be the least positive integer such that there exist distinct noncyclic elements $a, b, c, d, e, t \in A$ such that $b \in C_k$, f(b) = a, f(c) = f(e) = b, f(d) = c, f(t) = e. If such k does not exist, then put k = 1 and a = f(b) for $c \in C_2, b = f(c)$. **Example:**

a

First we will investigate the case k > 1. We define the operations g_5 and g_6 on A by putting

$$g_5(x) := \begin{cases} b' & \text{if } f(x) = b, \\ f(x) & \text{otherwise,} \end{cases}$$
$$g_6(x) := \begin{cases} a' & \text{if } f(x) = a, \\ f(x) & \text{otherwise.} \end{cases}$$

Analogously like before, $Con(A, f) = Con(A, g_5) \cap Con(A, g_6)$, hence Con(A, f) is \wedge -reducible.

Necessary condition

Example:

Now we deal with the case k = 1. Let g_7 and g_8 be the following operations on A:

$$g_7(x) := \begin{cases} b' & \text{if } f(x) = b, \\ f(x) & \text{otherwise,} \end{cases}$$
$$g_8(x) := \begin{cases} b & \text{if } f(x) \in C, \\ b' & \text{otherwise.} \end{cases}$$

Analogously like before, $Con(A, f) = Con(A, g_7) \cap Con(A, g_8)$, hence Con(A, f) is \wedge -reducible.

Proposition

If (A, f) does not satisfy the condition (*2), then Con(A, f) is \wedge -reducible.

Next, we suppose that the condition (*1) and the condition (*2) are satisfied. Our aim is to prove that in this case, $\mathrm{Con}(A,f)$ is $\wedge\text{-irreducible}.$

• By way of contradiction, suppose that Con(A, f) is \wedge -reducible. Then there exists a set G of nontrivial operations on A such that $|G| \ge 2$ and

$$\operatorname{Con}(A, f) = \bigcap_{g \in G} \operatorname{Con}(A, g), \operatorname{Con}(A, f) \neq \operatorname{Con}(A, g) \text{ for } g \in G.$$

• This implies that for every $x, y \in A : (g(x), g(y)) \in \theta_f(x, y)$.

- According to condition (*2), there exist distinct noncyclic elements $a, b, c, d \in A$ such that $f(a), f(c) \in C$ and f(b) = a, f(d) = c.
- This and $\forall x, y \in A : (g(x), g(y)) \in \theta_f(x, y)$ yield some conditions for g(a), g(b), g(c), g(d) and g(a'), g(b'), g(c'), g(d').
- We proved that g(x) = f(x) for each $x \in A$, which is a contradiction with $Con(A, f) \subsetneq Con(A, g)$.

Proposition

If the conditions (*1) and (*2) are valid, then ${\rm Con}(A,f)$ is $\wedge\mbox{-irreducible}.$

Theorem

Let (A, f) be a connected monounary algebra with at least 3 cyclic elements. Then Con(A, f) is \wedge -irreducible if and only if the conditions (*1) and (*2) are satisfied.

- Jakubíková-Studenovská, D., Janičková, L.: **Meet-irreducible** congruence lattices. Algebra Universalis. 79(4), (2018).
- Jakubíková-Studenovská, D., Pöschel, R., Radeleczki, S.: **The lattice of congruence lattices of algebra on a finite set.** Algebra Universalis. 79(2), (2018).
- Jakubíková-Studenovská, D., Janičková, L.: **Congruence lattices of connected monounary algebras.** Algebra Universalis. 81(4), (2020).

Thank you for your attention.