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Outline

General goal:

results for algebras on finite domains −→ algebras with infinite domains

Tutorial part 1:

Goal fails badly in general

Fruitful assumption: oligomorphicity

Examples

Fundamental results

Tutorial part 2:

More advanced results (Barto, Mottet, Opršal, Pinsker, . . . )
Applications

Constraint satisfaction
Finite model theory, database theory
Theory of relation algebras (e.g., work of Andréka, Hirsch, Hodkinson,
Maddux, . . . ), network satisfaction
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Pol-Inv

A = (A; f1, f2, . . . ): algebra.
C = Clo(A): clone of term operations of A.

Definition. f : Ak → A preserves R ⊆ Am if for all a1, . . . ,ak ∈ R

f (a1, . . . ,ak )︸ ︷︷ ︸
computed componentwise

∈ R

C: clone on A.
Inv(C): set of all relations preserved by every f ∈ C.

R: set of relations on A.
Pol(R): set of all operations preserving every R ∈ R.

Fact. If A is finite, then
Pol(Inv(C)) = C.
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Infinite Example

sn : Z→ Z given by x 7→ x + n
t : Z→ Z: the transposition (0,1).

A := (Z; s1, s−1, t)

Clo(A). Countable.
Pol(Inv(Clo(A))): contains all injections Z→ Z. Uncountable.

AAk
equipped with product topology (for A discrete).

for each a0,a1, . . . ,ak ∈ Am basic open set:

Ba0,a1,...,ak :=
{

f : Ak → A | f (a1, . . . ,ak ) = a0
}

⋃
k≥1 Ak → A: equipped with sum-space topology

Fact.
Pol(Inv(C)) = C
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Inv-Pol

A = (A;R1,R2, . . . ): relational structure.

Pol(A) := Pol({R1,R2, . . . })

Inv(Pol(A))

Theorem (Geiger’68, Bodnarčuk, Kalužnin, Kotov, Romov’69):
If A is finite, then

Inv(Pol(A)) = (A)pp := {R | R has primitive positive (pp) definition in A}.

Primitive positive formulas are of the form:

∃x1, . . . , xn ( ψ1 ∧ · · ·∧ψm︸ ︷︷ ︸
ψ1,...,ψm atomic formulas

)

Application: Complexity of Constraint Satisfaction.
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Inv-Pol on Infinite Domains

A =
(
Z; {0}, {(x , y) | y = x + 1}, {(a,b, c,d) | a = b ⇒ c = d}

)
Pol(A) = {all projections}

Inv(Pol(A)) = {all relations on A}

General description of Inv(Pol(A)): Szabó, Geiger, Pöschel,
using infinitary relations.

Stronger fact. If A is countable, then Inv(Pol(A)) equals smallest set of
(finitary!) relations containing the relations of A that is

closed under pp definitions,

infinite intersections, and

direct unions.

Observation: If for each arity only finitely many pp definable relations:

Inv(Pol(A)) = (A)pp.
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Oligomorphic Clones

C(1): the unary operations in C.
G := {u ∈ C(1) | ∃v ∈ C(1) s.t. u ◦ v = v ◦ u = id}: a permutation group.
Note: If C = Pol(A) then G = Aut(A).

Definition (Oligomorphicity)

Let G be a permutation group on a countably infinite set A.
G is oligomorphic if for every m ∈ N the action G y Am has finitely many
orbits, i.e., finitely many sets of the form

{u(a) | u ∈ G} for a ∈ Am.

Clear: Aut(A) oligomorphic⇒ finitely many pp definable relations in A.

Aut(A) oligomorphic ⇔ (A)fo has finitely many relations for every fixed arity

⇔ Aut(A) y
(

A
m

)
has finitely many orbits for every m ∈ N
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Examples

A clone C is oligomorphic if it contains an oligomorphic permutation group.
An algebra A is oligomorphic if Clo(A) is oligomorphic.

G = Sym(N).
C = Pol(N; 6=, {(a,b, c,d) | a = b ⇒ c = d }).
Uncountably many clones C with G ⊆ C(1) (B., Chen, Pinsker’10).

G = Aut(Q;<).
Aut(Q;<) y

(Q
m

)
has one orbit, for every m.

C = Pol(Q; {(u, v ,w) | u > v ∨ u > w }).

Non-example: Pol(Z;<).
Aut(Z;<) y

(Z
1

)
: 1 orbit.

Aut(Z;<) y
(Z

2

)
: infinitely many orbits!
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Countable Categoricity

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

Let A be a countable structure. Then Pol(A) is oligomorphic if and only if
A is ω-categorical, i.e., all countable models of the first-order theory of A are
isomorphic.

Examples.

(Q;<)

(Cantor: all countable dense unbounded linear orders are isomorphic)

the countable atomless Boolean algebra,

the Rado graph := the (up to isomorphism unique) countable model of the
almost-sure theory of Gn,1/2

Proposition (B.+Nešetřil’03). If A is a countable ω-categorical structure, then

Inv(Pol(A)) = (A)pp.
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Homogeneity

A structure A is homogeneous iff every isomorphism
between finitely generated substructures of A
can be extended to an automorphism of A.

Observation. Every homogeneous structure with a finite relational signature
has an oligomorphic polymorphism clone.

‘finitely homogeneous structures’

Examples: (N; 6=), (Q;<), S(2), the ‘dense local order’.

Homogeneous structures as Fraı̈ssé-limits:
if C is a class of finite structures such that

C is closed under isomorphism and substructures

C has the amalgamation property

then there exists an (up to isomorphism unique)
homogeneous structure L such that C = Age(L) := {A finite | A ↪→ L}.
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Congruences

Definition. A congruence of an algebra A = (A; f1, f2, . . . )
is an equivalence relation in Inv({f1, f2, . . . }).

Observations: If A is oligomorphic, then

A/∼ is oligomorphic.

A has finitely many congruences.

A has a unique coarsest congruence with finite classes.

A has a unique finest congruence with finitely many classes.

May also have congruences with infinitely many infinite classes.
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Birkhoff’s Theorem

Let A be an oligomorphic algebra.

Observations.

the variety HSP(A) contains algebras that are not oligomorphic.

all algebras in the pseudo-variety HSPfin(A) are oligomorphic.

Theorem (B.+Pinsker’15). Let A,B be oligomorphic algebras with the same
signature. Then the following are equivalent:

B ∈ HSPfin(A).

the natural homomorphism Clo(A)→ Clo(B) exists and is continuous.

Corollaries:

There is an isomorphism Pol(A)→ Pol(B) which is a homeomorphism
if and only if A and B are pp bi-interpretable.

Pol(A) has a continuous homomorphism to Pol(K3)

if and only if K3 has a pp interpretation in A.

Applications for complexity of constraint satisfaction.
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Idempotence

An operation f is called idempotent if it satisfies f (x , . . . , x) ≈ x .
A clone is called idempotent if all its operations are idempotent.

Observations:

A clone C on a set A is idempotent if and only if
{a} ∈ Inv(C) for every a ∈ A.

Oligomorphic clones on infinite sets are never idempotent.

Oligomorphic clones may contain interesting idempotent operations:

e.g.: Pol(Q;<) contains (x , y) 7→ min(x , y)

Pol(N; 6=) contains an operation f that satisfies

f (x , x , y) ≈ f (x , y , x) ≈ f (y , x , x) ≈ f (x , x , x)

but no interesting idempotent operation.
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Model-Complete Cores

Definition: A structure A is called a model-complete core if

Aut(A) = Pol(A)(1).

Equivalent: Every first-order formula is equivalent to a pp formula in A.

Examples: (N; 6=), (Q;<), S(2), . . .

Non-Examples:

A := (Q;≤) has constant polymorphisms,
but the closure of Aut(A) only contains injective functions.

The Rado graph has non-injective endomorphisms.

Useful Consequence: If A is a model-complete core such that for some
g,h : {1, . . . ,n}→ {1, . . . ,n} there exists f ∈ Pol(A) with

f (xg(1), . . . , xg(n)) ≈ f (xh(1), . . . , xh(n))

then for every a ∈ Am, m ∈ N, the clone Pol(A, �a) also contains such an f .
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Homomorphic Equivalence

Two structures A and B are called homomorphically equivalent if there is a
homomorphism from A to B and vice versa.

Observation: Suppose that A and B are homomorphically equivalent
and f ∈ Pol(A) satisfies

f (xg(1), . . . , xg(n)) ≈ f (xh(1), . . . , xh(n))

for some g,h : {1, . . . ,n}→ {1, . . . , k }, then Pol(B) also contains such an f .

Theorem (B.’06): Every countable ω-categorical structure A is
homomorphically equivalent to a model-complete core structure C,
which is unique up to isomorphism, and ω-categorical.

Example. The Rado graph is homomorphically equivalent to (N; 6=).
“(N; 6=) is the model-complete core of the Rado graph”
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Siggers Operations

Building on results from Bulatov’05, Hell+Nešetřil’90:

Theorem (Siggers’10).

Let A be a finite structure such that Pol(A) is idempotent. Then TFAE:

Pol(A) has no clone homomorphism to Pol(K3).

Pol(A) contains an operation s such that

s(x , y , x , z, y , z) ≈ s(z, z, y , y , x , x).

All polymorphisms of K3 are essentially permutations.

K3

x

y
z
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Pseudo-Siggers Operations

Theorem (Barto+Pinsker’16).

Let A be an ω-categorical model-complete core. Then TFAE:

for all n ∈ N, �a ∈ An, there is no continuous clone homomorphism

Pol(A, �a)→ Pol(K3).

Pol(A) contains operations s, e1, e2 such that

e1(s(x , y , x , z, y , z)) ≈ e2(s(z, z, y , y , x , x)).

s is called pseudo-Siggers polymorphism of A.
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Exercises

Let J = (V ;E) be the line graph of the infinite clique
(also called the Johnson graph):

Vertices: V :=
{
{u, v } | u, v ∈ N,u 6= v

}
Edges:

{
{u, v }, {a,b}

}
∈ E if |{u, v ,a,b}| = 3.

Tasks:

1 Is Pol(J) oligomorphic?

2 What is the model-complete core of J?

3 Is there a continuous clone homomorphism Pol(J)→ Pol(K3)?

4 Is there a clone homomorphism Pol(J)→ Pol(K3)?

5 Does J have a Siggers polymorphism?

6 Does J have a pseudo-Siggers polymorphism?

Solutions due: Feb 6, 2020, 18h00.
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