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Outline

General goal:

‘ results for algebras on finite domains — algebras with infinite domains

Tutorial part 1:
m Goal fails badly in general
m Fruitful assumption: oligomorphicity
m Examples
m Fundamental results
Tutorial part 2:
m More advanced results (Barto, Mottet, Oprsal, Pinsker, .. .)

m Applications

m Constraint satisfaction

m Finite model theory, database theory

m Theory of relation algebras (e.g., work of Andréka, Hirsch, Hodkinson,
Maddux, ...), network satisfaction
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Pol-Inv

A= (Af,h,...): algebra.
€ = Clo(A): clone of term operations of A.

Definition. f: AK — Apreserves R C A" if for all ay,...,ax € R
flas,y...,ak) €R
N—_———
computed componentwise

C: clone on A. .
clone o Inv(C): set of all relations preserved by every f € C.

R: set of relations on A.
Pol(R): set of all operations preserving every R € R.

Fact. If Ais finite, then
Pol(Inv(€)) = €.
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Infinite Example

Sn: Z — Z givenby x — x+n
t: Z — 7Z: the transposition (0, 1).
A = (Zv S1,5-1, t)

Clo(A). Countable.
Pol(Inv(Clo(A))): contains all injections Z — Z. Uncountable.

AN equipped with product topology (for A discrete).
for each ay, ay,...,ax € A™ basic open set:

Bay,ay,...oa = 1f: AX = Al f(ay,...,a) = a}

Uk21 Ak — A: equipped with sum-space topology

Fact.
Pol(Inv(C)) =C
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Inv-Pol

2A = (A; Ry, Ro,...): relational structure.
Pol(2l) := Pol({Ry, Ro,...})
Inv(Pol(21))

Theorem (Geiger'68, Bodnarcuk, Kaluznin, Kotov, Romov’69):
If Ais finite, then

Inv(Pol(20)) = (A)pp :={R | R has primitive positive (pp) definition in 2A}.
Primitive positive formulas are of the form:

IxXtyeos Xn (i A Aby )
—_—

Yiyenns 1, atomic formulas

Application: Complexity of Constraint Satisfaction.
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Inv-Pol on Infinite Domains

2= (Z,{O},{(X,y) | y=x+ 1}>{(a)b> c, d) la=b=c= d})
Pol(2() = {all projections}
Inv(Pol(2()) = {all relations on A}

General description of Inv(Pol(2()): Szabd, Geiger, Péschel,
using infinitary relations.

Stronger fact. If 2 is countable, then Inv(Pol(2()) equals smallest set of
(finitary!) relations containing the relations of 2 that is

m closed under pp definitions,

m infinite intersections, and

m direct unions.
Observation: If for each arity only finitely many pp definable relations:

Inv(Pol(21)) = (2A) pp.-
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Oligomorphic Clones

€(): the unary operations in €.
G:={uece|3qvee st uov=vou=id}: apermutation group.
Note: If C = Pol(2() then § = Aut(2().

Definition (Oligomorphicity)
Let G be a permutation group on a countably infinite set A.

§ is oligomorphic if for every m € N the action § ~ A™ has finitely many
orbits, i.e., finitely many sets of the form

{u(a)|ue G} forae A™.

Clear: Aut(2() oligomorphic = finitely many pp definable relations in 2.

Aut(21) oligomorphic & (20)4, has finitely many relations for every fixed arity

A
&S Aut(A) ~ <m) has finitely many orbits for every m e N
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Examples

A clone € is oligomorphic if it contains an oligomorphic permutation group.
An algebra A is oligomorphic if Clo(A) is oligomorphic.

m G = Sym(N).

C = Pol(N; #,{(a,b,c,d) [a=b=c=d)).

Uncountably many clones € with G C ) (B., Chen, Pinsker'10).
m G = Aut(Q;<).

Aut(Q; <) ~ (2) has one orbit, for every m.

C =Pol(Q;{(uyvyw)|u>vVu>w}.
m Non-example: Pol(Z; <).

Aut(Z; <) ~ (§): 1 orbit.

Aut(Z; <) ~ (g): infinitely many orbits!
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Countable Categoricity

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

Let 2 be a countable structure. Then Pol(2() is oligomorphic if and only if
20 is w-categorical, i.e., all countable models of the first-order theory of 2 are
isomorphic.

Examples.
m (Q<)
(Cantor: all countable dense unbounded linear orders are isomorphic)
m the countable atomless Boolean algebra,

m the Rado graph := the (up to isomorphism unique) countable model of the
almost-sure theory of G, 12

Proposition (B.+NeSetfil'03). If 2 is a countable w-categorical structure, then

Inv(Pol(21)) = (2A)pp-
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Homogeneity

A structure 20 is homogeneous iff every isomorphism
between finitely generated substructures of 2
can be extended to an automorphism of 2L.

Observation. Every homogeneous structure with a finite relational signature
has an oligomorphic polymorphism clone.

‘finitely homogeneous structures’

Examples: (N;#), (Q;<), S(2), the ‘dense local order’.
Homogeneous structures as Fraissé-limits:
if C is a class of finite structures such that
m C is closed under isomorphism and substructures
m C has the amalgamation property

then there exists an (up to isomorphism unique)
homogeneous structure £ such that C = Age(£) := {2 finite | > — £}.
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Congruences

Definition. A congruence of an algebra A = (A;fi, f,...)
is an equivalence relation in Inv({f, f,...}).
Observations: If A is oligomorphic, then
m A/~ is oligomorphic.
m A has finitely many congruences.
m A has a unique coarsest congruence with finite classes.
m A has a unique finest congruence with finitely many classes.
m May also have congruences with infinitely many infinite classes.
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Birkhoff’s Theorem

Let A be an oligomorphic algebra.

Observations.
m the variety HSP(A) contains algebras that are not oligomorphic.
m all algebras in the pseudo-variety HSPfi"(A) are oligomorphic.

Theorem (B.+Pinsker’15). Let A, B be oligomorphic algebras with the same
signature. Then the following are equivalent:

m B c HSP™(A).
m the natural homomorphism Clo(A) — Clo(B) exists and is continuous.

Corollaries:

m There is an isomorphism Pol(2() — Pol(8) which is a homeomorphism
if and only if A and B are pp bi-interpretable.

m Pol(2() has a continuous homomorphism to Pol(Kj3)
if and only if K3 has a pp interpretation in 2.

Applications for complexity of constraint satisfaction.
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Idempotence

An operation f is called idempotent if it satisfies f(x,..., x) =~ x.
A clone is called idempotent if all its operations are idempotent.

Observations:

m A clone C on a set A is idempotent if and only if
{a} € Inv(C) for every a € A.

m Oligomorphic clones on infinite sets are never idempotent.
m Oligomorphic clones may contain interesting idempotent operations:

e.g.. Pol(Q;<) contains (x, y) — min(x, y)
m Pol(N;#) contains an operation f that satisfies
fx, x,y) = f(x,y,x) = f(y, x, x) = f(x, X, X)

but no interesting idempotent operation.
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Model-Complete Cores

Definition: A structure 2l is called a model-complete core if
Aut(2() = Pol(21)!").

Equivalent: Every first-order formula is equivalent to a pp formula in 2L.
Examples: (N;#), (Q;<), S(2), ...

Non-Examples:

m 2 = (Q; <) has constant polymorphisms,
but the closure of Aut(2() only contains injective functions.

m The Rado graph has non-injective endomorphisms.

Useful Consequence: If 2 is a model-complete core such that for some
g,h:{1,....,n} = {1,..., n} there exists f € Pol(2() with

f(Xg(1)y -+ > Xgm) = F(Xn(1)y -+ - Xn(m))

then for every a € A™, m € N, the clone Pol(2l, a) also contains such an f.
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Homomorphic Equivalence

Two structures 21 and B are called homomorphically equivalent if there is a
homomorphism from 2l to 8 and vice versa.

Observation: Suppose that 2( and B are homomorphically equivalent
and f € Pol(2l) satisfies

f(XgH)»---»Xg(n]) ~ f(Xh(ﬂ)---)Xh(n))

for some g, h: {1,...,n} — {1,..., k}, then Pol(25) also contains such an f.

Theorem (B.06): Every countable w-categorical structure 2l is
homomorphically equivalent to a model-complete core structure &,
which is unique up to isomorphism, and w-categorical.

Example. The Rado graph is homomorphically equivalent to (N;#).
“(N; #) is the model-complete core of the Rado graph”
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Siggers Operations

Building on results from Bulatov’05, Hell+NesSetfil'90:

Theorem (Siggers’10).

Let 2( be a finite structure such that Pol(2() is idempotent. Then TFAE:
m Pol(2A) has no clone homomorphism to Pol(K3).
m Pol(2() contains an operation s such that

S(X)y)X)z).y7z) ~ S(Z)Z)y7y)X)X)‘

All polymorphisms of K3 are essentially permutations.
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Pseudo-Siggers Operations

Theorem (Barto+Pinsker’16).

Let 2( be an w-categorical model-complete core. Then TFAE:
m forall n e N, a € A", there is no continuous clone homomorphism

Pol(2, a) — Pol(K3).

m Pol(2() contains operations s, ey, e; such that

91(3()(»}/,)(,2)}’»2)) ~ ez(S(Z»Z»y,y)X,X))-

s is called pseudo-Siggers polymorphism of 2.

Oligomorphic Clones (Part 1 of 2) Manuel Bodirsky 17



Exercises

Let J = (V; E) be the line graph of the infinite clique
(also called the Johnson graph):

m Vertices: V:= {{u,v}|u,veNu#v}
m Edges: {{u,v},{a b}} € Eifl{u,v,a b}l =3.

Tasks:
H Is Pol(J) oligomorphic?
HA What is the model-complete core of J?
H Is there a continuous clone homomorphism Pol(J) — Pol(K3)?
A Is there a clone homomorphism Pol(J) — Pol(K3)?
H Does J have a Siggers polymorphism?
A Does J have a pseudo-Siggers polymorphism?

Solutions due: Feb 6, 2020, 18h00.
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