Oligomorphic Clones (Part 1 of 2)

Manuel Bodirsky

Institut für Algebra, TU Dresden

February 5, 2021 AAA 100, Kraków, virtual

Outline

General goal:

results for algebras on finite domains \longrightarrow algebras with infinite domains

Tutorial part 1:

- Goal fails badly in general
- Fruitful assumption: oligomorphicity
- Examples
- Fundamental results

Tutorial part 2:

- More advanced results (Barto, Mottet, Opršal, Pinsker, ...)
- Applications
 - Constraint satisfaction
 - Finite model theory, database theory
 - Theory of relation algebras (e.g., work of Andréka, Hirsch, Hodkinson, Maddux, ...), network satisfaction

Pol-Inv

 $\underline{A} = (A; f_1, f_2, ...)$: algebra. $\mathcal{C} = \text{Clo}(\underline{A})$: clone of term operations of A.

Definition. $f: A^k \to A$ preserves $R \subseteq A^m$ if for all $a_1, \ldots, a_k \in R$

$$\underbrace{f(a_1,\ldots,a_k)} \in R$$

computed componentwise

C: clone on A.

 $Inv(\mathcal{C})$: set of all relations preserved by every $f \in \mathcal{C}$.

 \mathfrak{R} : set of relations on A.

 $\mathsf{Pol}(\mathfrak{R})$: set of all operations preserving every $R \in \mathfrak{R}$.

Fact. If A is finite, then

 $\mathsf{Pol}(\mathsf{Inv}(\mathfrak{C})) = \mathfrak{C}.$

Infinite Example

 $s_n: \mathbb{Z} \to \mathbb{Z}$ given by $x \mapsto x + n$ $t: \mathbb{Z} \to \mathbb{Z}$: the transposition (0, 1).

$$\underline{A} := (\mathbb{Z}; s_1, s_{-1}, t)$$

Clo(<u>A</u>). Countable.

 $\mathsf{Pol}(\mathsf{Inv}(\mathsf{Clo}(\underline{A})))$: contains all injections $\mathbb{Z} \to \mathbb{Z}$. Uncountable.

 A^{A^k} equipped with product topology (for A discrete). for each $a_0, a_1, \ldots, a_k \in A^m$ basic open set:

$$B_{a_0,a_1,\ldots,a_k}\coloneqq \left\{f\colon A^k o A \mid f(a_1,\ldots,a_k)=a_0
ight\}$$

 $\bigcup_{k\geq 1} A^k \to A$: equipped with sum-space topology Fact.

 $\mathsf{Pol}(\mathsf{Inv}(\mathcal{C})) = \overline{\mathcal{C}}$

 $\mathfrak{A} = (A; R_1, R_2, ...)$: relational structure.

 $\mathsf{Pol}(\mathfrak{A}) := \mathsf{Pol}(\{R_1, R_2, \dots\})$

 $Inv(Pol(\mathfrak{A}))$

Theorem (Geiger'68, Bodnarčuk, Kalužnin, Kotov, Romov'69): If *A* is finite, then

 $Inv(Pol(\mathfrak{A})) = (\mathfrak{A})_{pp} := \{R \mid R \text{ has primitive positive (pp) definition in } \mathfrak{A}\}.$

Primitive positive formulas are of the form:

$$\exists x_1, \dots, x_n \ (\underbrace{\psi_1 \land \dots \land \psi_m}_{\psi_1, \dots, \psi_m \text{ atomic formulas}})$$

Application: Complexity of Constraint Satisfaction.

Inv-Pol on Infinite Domains

$$\mathfrak{A} = \big(\mathbb{Z}; \{0\}, \{(x, y) \mid y = x + 1\}, \{(a, b, c, d) \mid a = b \Rightarrow c = d\}\big)$$

 $\mathsf{Pol}(\mathfrak{A}) = \{ all \text{ projections} \}$

 $Inv(Pol(\mathfrak{A})) = \{all relations on A\}$

General description of $Inv(Pol(\mathfrak{A}))$: Szabó, Geiger, Pöschel, using infinitary relations.

Stronger fact. If \mathfrak{A} is countable, then $Inv(Pol(\mathfrak{A}))$ equals smallest set of (finitary!) relations containing the relations of \mathfrak{A} that is

- closed under pp definitions,
- infinite intersections, and
- direct unions.

Observation: If for each arity only finitely many pp definable relations:

$$\mathsf{nv}(\mathsf{Pol}(\mathfrak{A})) = (\mathfrak{A})_{\mathsf{pp}}.$$

Oligomorphic Clones

 $\mathcal{C}^{(1)}$: the unary operations in \mathcal{C} .

 $\mathcal{G} := \{ u \in \mathcal{C}^{(1)} \mid \exists v \in \mathcal{C}^{(1)} \text{ s.t. } u \circ v = v \circ u = id \}$: a permutation group.

Note: If $\mathcal{C} = \mathsf{Pol}(\mathfrak{A})$ then $\mathfrak{G} = \mathsf{Aut}(\mathfrak{A})$.

Definition (Oligomorphicity)

Let \mathcal{G} be a permutation group on a countably infinite set A. \mathcal{G} is oligomorphic if for every $m \in \mathbb{N}$ the action $\mathcal{G} \frown A^m$ has finitely many orbits, i.e., finitely many sets of the form

$$\{u(a) \mid u \in \mathcal{G}\}$$
 for $a \in A^m$.

Clear: $Aut(\mathfrak{A})$ oligomorphic \Rightarrow finitely many pp definable relations in \mathfrak{A} .

 $\operatorname{Aut}(\mathfrak{A})$ oligomorphic $\Leftrightarrow (\mathfrak{A})_{fo}$ has finitely many relations for every fixed arity

 $\Leftrightarrow \mathsf{Aut}(\mathfrak{A}) \curvearrowright \begin{pmatrix} \mathsf{A} \\ \mathsf{m} \end{pmatrix} \text{ has finitely many orbits for every } \mathsf{m} \in \mathbb{N}$

Examples

A clone C is oligomorphic if it contains an oligomorphic permutation group. An algebra <u>A</u> is oligomorphic if $Clo(\underline{A})$ is oligomorphic.

- $\mathcal{G} = \text{Sym}(\mathbb{N}).$ $\mathcal{C} = \text{Pol}(\mathbb{N}; \neq, \{(a, b, c, d) \mid a = b \Rightarrow c = d\}).$ Uncountably many clones \mathcal{C} with $\mathcal{G} \subseteq \mathcal{C}^{(1)}$ (B., Chen, Pinsker'10).
- $\mathcal{G} = \operatorname{Aut}(\mathbb{Q}; <).$ $\operatorname{Aut}(\mathbb{Q}; <) \curvearrowright \begin{pmatrix} \mathbb{Q} \\ m \end{pmatrix}$ has one orbit, for every *m*. $\mathcal{C} = \operatorname{Pol}(\mathbb{Q}; \{(u, v, w) \mid u > v \lor u > w\}).$
- Non-example: Pol(\mathbb{Z} ; <). Aut(\mathbb{Z} ; <) \sim ($\binom{\mathbb{Z}}{1}$): 1 orbit. Aut(\mathbb{Z} ; <) \sim ($\binom{\mathbb{Z}}{2}$): infinitely many orbits!

Theorem (Engeler, Ryll-Nardzewski, Svenonius).

Let \mathfrak{A} be a countable structure. Then $\mathsf{Pol}(\mathfrak{A})$ is oligomorphic if and only if \mathfrak{A} is ω -categorical, i.e., all countable models of the first-order theory of \mathfrak{A} are isomorphic.

Examples.

- (Q; <) (Cantor: all countable dense unbounded linear orders are isomorphic)
- the countable atomless Boolean algebra,
- the Rado graph := the (up to isomorphism unique) countable model of the almost-sure theory of $G_{n,1/2}$

Proposition (B.+Nešetřil'03). If \mathfrak{A} is a countable ω -categorical structure, then

 $Inv(Pol(\mathfrak{A})) = (\mathfrak{A})_{pp}.$

Homogeneity

A structure \mathfrak{A} is homogeneous iff every isomorphism between finitely generated substructures of \mathfrak{A} can be extended to an automorphism of \mathfrak{A} .

Observation. Every homogeneous structure with a finite relational signature has an oligomorphic polymorphism clone.

'finitely homogeneous structures'

Examples: $(\mathbb{N}; \neq)$, $(\mathbb{Q}; <)$, S(2), the 'dense local order'.

Homogeneous structures as Fraïssé-limits: if C is a class of finite structures such that

- C is closed under isomorphism and substructures
- $\blacksquare \ \mathcal{C}$ has the amalgamation property

then there exists an (up to isomorphism unique) homogeneous structure \mathfrak{L} such that $\mathcal{C} = Age(\mathfrak{L}) := \{\mathfrak{A} \text{ finite } | \mathfrak{A} \hookrightarrow \mathfrak{L}\}.$ **Definition.** A congruence of an algebra $\underline{A} = (A; f_1, f_2, ...)$ is an equivalence relation in $Inv(\{f_1, f_2, ...\})$.

Observations: If A is oligomorphic, then

- \underline{A}/\sim is oligomorphic.
- <u>A</u> has finitely many congruences.
- \underline{A} has a unique coarsest congruence with finite classes.
- <u>A</u> has a unique finest congruence with finitely many classes.
- May also have congruences with infinitely many infinite classes.

Birkhoff's Theorem

Let <u>A</u> be an oligomorphic algebra.

Observations.

- the variety $HSP(\underline{A})$ contains algebras that are not oligomorphic.
- all algebras in the pseudo-variety $HSP^{fin}(\underline{A})$ are oligomorphic.

Theorem (B.+Pinsker'15). Let $\underline{A}, \underline{B}$ be oligomorphic algebras with the same signature. Then the following are equivalent:

- $\blacksquare \underline{B} \in \mathsf{HSP}^{\mathsf{fin}}(\underline{A}).$
- the natural homomorphism $Clo(\underline{A}) \rightarrow Clo(\underline{B})$ exists and is continuous.

Corollaries:

- There is an isomorphism $Pol(\mathfrak{A}) \to Pol(\mathfrak{B})$ which is a homeomorphism if and only if <u>A</u> and <u>B</u> are pp bi-interpretable.
- Pol(𝔅) has a continuous homomorphism to Pol(𝐾) if and only if 𝐾 has a pp interpretation in 𝔅.

Applications for complexity of constraint satisfaction.

Idempotence

An operation *f* is called idempotent if it satisfies $f(x,...,x) \approx x$. A clone is called idempotent if all its operations are idempotent.

Observations:

- A clone C on a set A is idempotent if and only if $\{a\} \in Inv(C)$ for every $a \in A$.
- Oligomorphic clones on infinite sets are never idempotent.
- Oligomorphic clones may contain interesting idempotent operations:

e.g.: $Pol(\mathbb{Q}; <)$ contains $(x, y) \mapsto min(x, y)$

■ $Pol(\mathbb{N}; \neq)$ contains an operation *f* that satisfies

 $f(x, x, y) \approx f(x, y, x) \approx f(y, x, x) \approx f(x, x, x)$

but no interesting idempotent operation.

Model-Complete Cores

Definition: A structure \mathfrak{A} is called a model-complete core if

 $\overline{\operatorname{Aut}(\mathfrak{A})}=\operatorname{Pol}(\mathfrak{A})^{(1)}.$

Equivalent: Every first-order formula is equivalent to a pp formula in \mathfrak{A} .

Examples: $(\mathbb{N}; \neq)$, $(\mathbb{Q}; <)$, S(2), ...

Non-Examples:

 𝔅 := (𝔅; ≤) has constant polymorphisms, but the closure of Aut(𝔅) only contains injective functions.

■ The Rado graph has non-injective endomorphisms.

Useful Consequence: If \mathfrak{A} is a model-complete core such that for some $g, h: \{1, \ldots, n\} \rightarrow \{1, \ldots, n\}$ there exists $f \in \mathsf{Pol}(\mathfrak{A})$ with

$$f(x_{g(1)},\ldots,x_{g(n)})\approx f(x_{h(1)},\ldots,x_{h(n)})$$

then for every $a \in A^m$, $m \in \mathbb{N}$, the clone $Pol(\mathfrak{A}, \overline{a})$ also contains such an f.

Two structures \mathfrak{A} and \mathfrak{B} are called homomorphically equivalent if there is a homomorphism from \mathfrak{A} to \mathfrak{B} and vice versa.

Observation: Suppose that \mathfrak{A} and \mathfrak{B} are homomorphically equivalent and $f \in \mathsf{Pol}(\mathfrak{A})$ satisfies

 $f(x_{g(1)},\ldots,x_{g(n)})\approx f(x_{h(1)},\ldots,x_{h(n)})$

for some $g, h: \{1, \ldots, n\} \rightarrow \{1, \ldots, k\}$, then $Pol(\mathfrak{B})$ also contains such an f.

Theorem (B.'06): Every countable ω -categorical structure \mathfrak{A} is homomorphically equivalent to a model-complete core structure \mathfrak{C} , which is unique up to isomorphism, and ω -categorical.

Example. The Rado graph is homomorphically equivalent to $(\mathbb{N}; \neq)$. " $(\mathbb{N}; \neq)$ is the model-complete core of the Rado graph"

Siggers Operations

Building on results from Bulatov'05, Hell+Nešetřil'90:

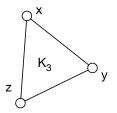
Theorem (Siggers'10).

Let \mathfrak{A} be a finite structure such that $\mathsf{Pol}(\mathfrak{A})$ is idempotent. Then TFAE:

- $Pol(\mathfrak{A})$ has no clone homomorphism to $Pol(K_3)$.
- **Pol** (\mathfrak{A}) contains an operation *s* such that

 $s(x, y, x, z, y, z) \approx s(z, z, y, y, x, x).$

All polymorphisms of K_3 are essentially permutations.



Theorem (Barto+Pinsker'16).

Let \mathfrak{A} be an ω -categorical model-complete core. Then TFAE:

• for all $n \in \mathbb{N}$, $\bar{a} \in A^n$, there is no continuous clone homomorphism

 $\mathsf{Pol}(\mathfrak{A}, \bar{a}) \to \mathsf{Pol}(K_3).$

■ $Pol(\mathfrak{A})$ contains operations *s*, *e*₁, *e*₂ such that

 $e_1(s(x,y,x,z,y,z)) \approx e_2(s(z,z,y,y,x,x)).$

s is called pseudo-Siggers polymorphism of \mathfrak{A} .

Exercises

Let J = (V; E) be the line graph of the infinite clique (also called the Johnson graph):

- Vertices: $V := \{\{u, v\} \mid u, v \in \mathbb{N}, u \neq v\}$
- Edges: $\{\{u, v\}, \{a, b\}\} \in E \text{ if } |\{u, v, a, b\}| = 3.$

Tasks:

- **1** Is Pol(J) oligomorphic?
- 2 What is the model-complete core of J?
- **3** Is there a continuous clone homomorphism $Pol(J) \rightarrow Pol(K_3)$?
- 4 Is there a clone homomorphism $Pol(J) \rightarrow Pol(K_3)$?
- 5 Does J have a Siggers polymorphism?
- 6 Does J have a pseudo-Siggers polymorphism?

Solutions due: Feb 6, 2020, 18h00.