Congruence lattices of Abelian *l*-groups

Miroslav Ploščica

P. J. Šafárik University, Košice

February 7, 2021

(日) (월) (일) (일) (일) (일)

Algebras $(G, +, 0, -, \lor, \land)$ such that (i) (G, +, 0, -) is an Abelian group; (ii) (G, \lor, \land) is a lattice; (iii) $x \leq y$ implies $x + z \leq y + z$ for every $x, y, z \in G$. Abelian *l*-groups form a variety generated by \mathbb{Z} .

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Congruences on Abelian l-groups correspond to l-ideals (=convex l-subgroups), these form a distributive algebraic lattice Id G. Compact congruences correspond to compact (finitely generated) l-ideals. They are principal and have the form

$$\langle a \rangle = \{ x \in G \mid (-na) \le x \le na \text{ for some } n \in \omega \},\$$

for $a \ge 0$.

Compact *l*-ideals form a sublattice $\mathrm{Id}_c G$ of $\mathrm{Id} G$. The lattice $\mathrm{Id} G$ is determined by $\mathrm{Id}_c G$ uniquely.

Problem. Which distributive lattices are isomorphic to $\operatorname{Id}_c G$ for some Abelian *l*-group G?

Equivalent form: Characterize spectral spaces of Abelian l-groups. (The set of prime ideals endowed with the hull-kernel topology.)

- 4 同 ト 4 回 ト 4 回 ト

Known for > 40 years:

Theorem

Every lattice $\operatorname{Id}_c G$ is completely normal, i.e. satisfies

$$(\forall a, b)(\exists x, y)(a \lor b = a \lor y = x \lor b \text{ and } x \land y = 0).$$

Intuitively: $x = a \setminus b$, $y = b \setminus a$. Equivalently: the ordered set of all prime ideals of the lattice $\mathrm{Id}_c G$ is a root system. (poset in which $\uparrow x$ is a chain for every x)

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Miroslav Ploščica Congruence lattices of Abelian *l*-groups

<ロ> <同> <同> <同> <同> < 同> < 同> <

æ

Theorem

Every finite completely normal distributive lattice is isomorphic to $Id_c G$ for some Abelian *l*-group G.

Construction (Conrad 1965): Let P be a finite root system. Let $G = \mathbb{Z}^P$ be the set of all functions $P \to \mathbb{Z}$ with poinwise addition and the order given by

f > g iff f(x) > g(x) for every $x \in M$,

where $M = \max\{x \in P \mid f(x) \neq g(x)\}.$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let L be a Boolean lattice, $L \subseteq \mathcal{P}(X)$. Let G be the subalgebra of \mathbb{Z}^X generated by all characteristic functions χ_A for $A \in L$. Then L is isomorphic to $\mathrm{Id}_c G$.

ヘロト ヘヨト ヘヨト

Let L be a chain with the least element. Let G be the set of all functions $L \to \mathbb{Z}$ with finite support. The addition is pointwise, the order lexicographic, which means

 $f < g \quad \text{iff} \quad f(t) < g(t),$

where $t = \max\{x \in L \mid f(x) \neq g(x)\}$. Then G is an Abelian *l*-group and L is isomorphic to Id_cG.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

No. (Example by Delzell and Madden 1994)

A new necessary condition found by Cignoli, Gluschankof and Lucas (1999), and also by Iberkleid, Martinez and McGovern (2011)

For $a, b \in L$ define

$$a \ominus b = \{ x \in L \mid a \le b \lor x \}.$$

We say that the lattice L has countably based differences, if the set $a \ominus b$ has a countable coinitial subset for every $a, b \in L$.

Theorem

For every Abelian *l*-group G, the lattice $\mathrm{Id}_c G$ has countably based differences.

向下 イヨト イヨト

- (1) Is every distributive completely normal lattice with countably based differences representable as $Id_c G$?
- (2) Is every *countable* distributive completely normal lattice representable as $Id_c G$?

Both questions were recently solved by F. Wehrung.

(1日) (1日) (1日)

A binary operation \backslash on a distributive lattice L with 0 is called Cevian, if

(i)
$$y \lor (x \setminus y) \ge x$$
 for every $x, y \in L$;
(ii) $(x \setminus y) \land (y \setminus x) = 0$ for every $x, y \in L$;
(iii) $x \setminus z \le (x \setminus y) \lor (y \setminus z)$ for every $x, y, z \in L$.

The lattice L is Cevian, if it has a Cevian operation. Clearly, every Cevian lattice is completely normal.

伺 ト イヨ ト イヨ ト

Theorem

- For every Abelian *l*-group G, the lattice $\operatorname{Id}_c G$ is Cevian.
- There exists a non-Cevian distributive lattice L of cardinality ℵ₂, which is completely normal and has countably based differences.

Theorem

Every countable completely normal distributive lattice is representable as $Id_c G$.

Remark: Delzell-Madden example has cardinality \aleph_1 .

- 4 同 ト 4 目 ト 4 目 ト

- (1) Is every Cevian distributive lattice with countably based differences representable as $\mathrm{Id}_c G$?
- (2) Is every completely normal distributive lattice with 0 of cardinality $\leq \aleph_1$ Cevian?
- (3) Is every completely normal distributive lattice with 0 of cardinality ℵ₁ having countably based differences representable as Id_c G?

(1) and (2) recently solved by M. Ploščica.

・ 同 ト ・ ヨ ト ・ ヨ ト

Let C be a bounded chain. Let L_C be the sublattice of $C\times \mathcal{P}(\omega)$ defined by

 $(\alpha, A) \in L_C$ iff $(\alpha = 0 \text{ and } A \text{ is finite}) \text{ or } (A \text{ is cofinite}).$

Easy to prove:

Theorem

For every chain C, the lattice L_C is Cevian and has countably based differences.

Theorem

If L_C is isomorphic to $\operatorname{Id}_c G$, then $|C| \leq 2^{\omega}$

Proof: L_C contains countably many coatoms c_i such that $\bigwedge c_i = 0$. If L_C is isomorphic to $\mathrm{Id}_c G$, then G contains countably many maximal l-ideals with intersection equal to $\{0\}$. Hence, G is a subdirect product of countably many simple algebras. However, simple l-groups embeds in reals, so $|G| \leq (2^{\omega})^{\omega} = 2^{\omega}$, and then $|C| \leq |L_C| \leq |G| \leq 2^{\omega}$.

So, if we choose C with $|C| > 2^{\omega}$, then L_C is a nonrepresentable Cevian lattice with countably based differences. Under Continuum Hypothesis we can have $|L_C| = \aleph_2$.

On the set of all functions $\omega \to \omega^+$ we define

 $f \sqsubset g \quad \text{iff} \quad (\text{the set } \{x \mid nf(x) > g(x)\} \text{ is finite for every } n \in \omega)$

Equivalently: $\lim g(x)/f(x) = \infty$.

Theorem

Suppose that there are functions h_{α} , $\alpha \in C$, such that $h_{\alpha} \sqsubset h_{\beta}$ whenever $\alpha < \beta$. Then L_C is representable.

l can find such h_{α} whenever $|C| \leq \aleph_1$. Conjecture: The above Theorem is an equivalence (true under CH).

イロト イポト イヨト イヨト 一日

- If $f \sqsubset g$, then $f \sqsubset h \sqsubset g$ for some h.
- If $f_0 \sqsubset f_1 \sqsubset f_2 \sqsubset \cdots \sqsubset g$, then there exists h such that $f_i \sqsubset h \sqsubset g$ for every i.
- If $g \sqsubset \cdots \sqsubset f_2 \sqsubset f_1 \sqsubset f_0$, then there exists h such that $g \sqsubset h \sqsubset f_i$ for every i.
- If $g_0 \sqsubset g_1 \sqsubset g_2 \sqsubset \cdots \sqsubset f_2 \sqsubset f_1 \sqsubset f_0$, then there exists h such that $g_i \sqsubset h \sqsubset f_j$ for every i, j.

< ロ > < 同 > < 回 > < 回 > < □ > <

Theorem

Every completely normal distributive lattice of cardinality at most \aleph_1 is Cevian.

This leaves (3) open. So, once again:

Problem: Is every completely normal distributive lattice of cardinality \aleph_1 with countably based differences isomorphic to $\operatorname{Id}_c G$ for some Abelian *l*-group G?

A possible strategy: to generalize Wehrung's proof for countable extensions of lattices instead of countable lattices.

- 4 同 ト 4 回 ト 4 回 ト

Thank you for attention.

ploscica.science.upjs.sk

Miroslav Ploščica Congruence lattices of Abelian *l*-groups

◆□▶ ◆舂▶ ◆注▶ ◆注▶