Jeffrey T. Denniston¹ Sergejs Solovjovs²

¹Department of Mathematical Sciences, Kent State University Kent, Ohio, USA 44242 e-mail: jdennist@kent.edu

²Department of Mathematics, Faculty of Engineering Czech University of Life Sciences Prague (CZU) Kamýcká 129, 16500 Praha 6 - Suchdol, Czech Republic e-mail: solovjovs@tf.czu.cz

100th Workshop on General Algebra

Jagiellonian University, Kraków, Poland February 5 – 7, 2021

Outline

- Introduction
- 2 Composite affine spaces
- 3 Affine spaces versus composite affine spaces
- 4 Sierpinski object for composite affine spaces
- Conclusion

Affine Sierpinski space

Introduction

Sierpinski space and object

Affine spaces

- The notion of *Sierpinski space* $S = (\{0,1\}, \{\varnothing, \{1\}, \{0,1\}\})$ plays an important role in general topology, e.g., a topological space is T_0 iff it can be embedded into some power of S.
- E. G. Manes introduced the concept of Sierpinski object in categories of structured sets and structure-preserving maps, and characterized the category of topological spaces among such categories in terms of the Sierpinski object.
- There exists a characterization of the category of fuzzy topological spaces in terms of the Sierpinski object of E. G. Manes.

Affine topology

Affine spaces

- There exists an affine approach to lattice-valued topology, inspired by the notion of affine set of Y. Diers.
- While lattice-valued topology replaces the two-element Boolean algebra with some lattice-theoretic structure (e.g., a quantale), affine topology uses an algebra from an arbitrary variety.
- Composite affine spaces provide an analogue of bitopological spaces of J. C. Kelly (sets with two topologies), i.e., these are the spaces, which have a set-indexed family of affine topologies.

Affine Sierpinski space

Composite affine Sierpinski space

- Recently, R. Noor *et al.* gave a characterization of Sierpinski object in the category of affine bitopological spaces.
- We describe Sierpinski object in the category of composite affine spaces: we construct a functor from the category of affine spaces to that of composite affine spaces, and show a simple condition, under which this functor preserves Sierpinski objects.
- We therefore provide a convenient method to obtain a composite affine Sierpinski space, given an affine Sierpinski space, getting, in particular, the Sierpinski object of R. Noor et al.

Algebraic preliminaries

Introduction

Ω -algebras and Ω -homomorphisms

Definition 1

Let $\Omega = (n_{\lambda})_{{\lambda} \in {\Lambda}}$ be a family of cardinal numbers, which is indexed by a (possibly proper or empty) class ${\Lambda}$.

- An Ω -algebra is a pair $(A, (\omega_{\lambda}^{A})_{\lambda \in \Lambda})$, comprising a set A and a family of maps $A^{n_{\lambda}} \xrightarrow{\omega_{\lambda}^{A}} A$ $(n_{\lambda}$ -ary primitive operations on A).
- An Ω -homomorphism $(A_1, (\omega_{\lambda}^{A_1})_{\lambda \in \Lambda}) \xrightarrow{\varphi} (A_2, (\omega_{\lambda}^{A_2})_{\lambda \in \Lambda})$ is a map $A_1 \xrightarrow{\varphi} A_2$ such that $\varphi \circ \omega_{\lambda}^{A_1} = \omega_{\lambda}^{A_2} \circ \varphi^{n_{\lambda}}$ for every $\lambda \in \Lambda$.
- $Alg(\Omega)$ is the construct of Ω -algebras and Ω -homomorphisms.

Forgetful functors of concrete categories will be denoted |-|.

Varieties and algebras

Definition 2

Let \mathcal{M} (resp. \mathcal{E}) be the class of Ω -homomorphisms with injective (resp. surjective) underlying maps. A variety of Ω -algebras is a full subcategory of $Alg(\Omega)$, which is closed under the formation of products, \mathcal{M} -subobjects and \mathcal{E} -quotients, and whose objects (resp. morphisms) are called *algebras* (resp. *homomorphisms*).

- **Output** CSLat(\bigvee) is the variety of \bigvee -semilattices.
- (U)SQuant is the variety of (unital) semi-quantales.
- **§** Frm is the variety of *frames*.
- **Observation** CBAIg is the variety of complete Boolean algebras.
- **OL** is the variety of *closure lattices*.

Affine spaces

From now on, **A** stands for an arbitrary variety of algebras.

Definition 4

Given a functor $\mathbf{X} \xrightarrow{\mathcal{T}} \mathbf{A}^{op}$, $\mathbf{AfSpc}(\mathcal{T})$ denotes the concrete category over \mathbf{X} , whose

objects (T-affine spaces or T-spaces) are pairs (X, τ), where X is an X-object and τ is a subalgebra of TX;

morphisms (*T-affine morphisms* or *T-morphisms*) $(X_1, \tau_1) \xrightarrow{f} (X_2, \tau_2)$ are **X**-morphisms $X_1 \xrightarrow{f} X_2$ with the property that $(Tf)^{op}(\alpha) \in \tau_1$ for every $\alpha \in \tau_2$.

Examples of the functor T

Affine spaces

000000000

Proposition 5

Every subcategory **S** of \mathbf{A}^{op} provides a functor $\mathbf{Set} \times \mathbf{S} \xrightarrow{\mathcal{P}_{\mathbf{S}}} \mathbf{A}^{op}$. which is given by $\mathcal{P}_{\mathbf{S}}((X_1,A_1) \xrightarrow{(f,\varphi)} (X_2,A_2)) = A_1^{X_1} \xrightarrow{\mathcal{P}_{\mathbf{S}}(f,\varphi)} A_2^{X_2}$, $(\mathcal{P}_{\mathbf{S}}(f,\varphi))^{op}(\alpha) = \varphi^{op} \circ \alpha \circ f.$

- **1** A subcategory $\mathbf{S} = \{A \xrightarrow{1_A} A\}$ provides a functor $\mathbf{Set} \xrightarrow{\mathcal{P}_A} \mathbf{A}^{op}$, $\mathcal{P}_{\Delta}(X_1 \xrightarrow{f} X_2) = A^{X_1} \xrightarrow{\mathcal{P}_{\Delta}f} A^{X_2}$, where $(\mathcal{P}_{\Delta}f)^{op}(\alpha) = \alpha \circ f$.
- **2** For $\mathbf{A} = \mathbf{CBAlg}$ and $\mathbf{S} = \{2 \xrightarrow{1_2} 2\}$, one gets the contravariant powerset functor **Set** $\xrightarrow{\mathcal{P}}$ **CBAlg**^{op}, given on a map $X_1 \xrightarrow{f} X_2$ by $\mathcal{P}X_2 \xrightarrow{(\mathcal{P}f)^{op}} \mathcal{P}X_1$ where $(\mathcal{P}f)^{op}(S) = \{x \in X_1 \mid f(x) \in S\}.$

Examples of affine spaces

- **1** If A = Frm, then $Af Spc(\mathcal{P}_2)$ is the category **Top** of topological spaces.
- **2** Af $Spc(\mathcal{P}_A)$ is the category Af Set(A) of affine sets of Y. Diers.
- 3 If A = USQuant or A = Frm, then $AfSpc(P_S)$ is the category **S-Top** of variable-basis lattice-valued topological spaces of S. E. Rodabaugh.
- If A = CL, then $AfSpc(\mathcal{P}_2)$ is the category Cls of closure spaces of D. Aerts et al.

Composite affine spaces

Introduction

Definition of the functor T_I

Definition 8

Let $\mathbf{X} \xrightarrow{T} \mathbf{A}^{op}$ be a functor, and let I be a *non-empty* set. Then $\mathbf{X} \xrightarrow{T_I} \mathbf{A}^{opI}$ stands for a functor, which is given by the commutative (for every $i \in I$) triangle

Composite affine spaces

Definition 9

Given a functor $X \xrightarrow{T_I} A^{opI}$, $CAfSpc(T_I)$ denotes the concrete category over X, whose

objects (composite T-affine spaces or composite T-spaces) are pairs $(X, (\tau_i)_{i \in I})$, where X is an X-object and τ_i is a subalgebra of TX for every $i \in I$;

morphisms (composite T-affine morphisms or composite T-morphisms) $(X, (\tau_i)_{i \in I}) \xrightarrow{f} (Y, (\sigma_i)_{i \in I})$ are X-morphisms $X \xrightarrow{f} Y$ such that for every $i \in I$, $(Tf)^{op}(\alpha) \in \tau_i$ for every $\alpha \in \sigma_i$.

Examples of composite affine spaces

- If A = Frm and $I = \{1, 2\}$, then $CAfSpc(\mathcal{P}_{2I})$ is the category **BiTop** of bitopological spaces of J. C. Kelly.
- ② If A = USQuant and $I = \{1, 2\}$, then $CAfSpc(\mathcal{P}_{AI})$ is the category A-BiTop of lattice-valued bitopological spaces of S. E. Rodabaugh.
- **3** If $I = \{1,2\}$, then **CAfSpc** (\mathcal{P}_{AI}) is the category of Abitopological spaces of R. Noor et al.

Initial sources and topological categories

Definition 11

Introduction

Given a concrete category **C** over **X**, a source $(C \xrightarrow{f_i} C_i)_{i \in I}$ in **C** is *initial* provided that an **X**-morphism $|B| \xrightarrow{f} |C|$ is a **C**-morphism whenever each composite $|B| \xrightarrow{f_i \circ f} |C_i|$ is a **C**-morphism.

Theorem 12

The concrete category (**CAfSpc**(T_1), |-|) is topological over **X**.

Corollary 13

The category **CAfSpc**(T_I) has (co)products provided that **X** does.

From affine spaces to composite affine spaces

Proposition 14

Introduction

There exists a functor $\mathbf{AfSpc}(T) \xrightarrow{F} \mathbf{CAfSpc}(T_I)$, $F((X,\tau) \xrightarrow{f} (Y,\sigma)) = (X^I,(\tau_i)_{i\in I}) \xrightarrow{f^I} (Y^I,(\sigma_i)_{i\in I})$, where $(X^I,\tau_i) \xrightarrow{\pi_i} (X,\tau)$ is an initial morphism in $\mathbf{AfSpc}(T)$ for every $i \in I$.

Proposition 15

 $\mathsf{AfSpc}(T) \xrightarrow{F} \mathsf{CAfSpc}(T_I)$ preserves initial sources.

Proposition 16

 $\mathsf{AfSpc}(\mathcal{P}_A) \xrightarrow{F} \mathsf{CAfSpc}(\mathcal{P}_{AI})$ is a non-concrete embedding.

References

From composite affine spaces to affine spaces

From now on, assume that the category **X** has (co)products.

Proposition 17

There exists a functor $\mathbf{CAfSpc}(T_I) \xrightarrow{G} \mathbf{AfSpc}(T)$, which is given by $G((X,(\tau_i)_{i\in I}) \xrightarrow{f} (Y,(\sigma_i)_{i\in I})) = \coprod_{i\in I} (X,\tau_i) \xrightarrow{f} \coprod_{i\in I} (Y,\sigma_i)$.

References

A specific morphism η

Remark 18

Introduction

There exists an **X**-morphism $X \xrightarrow{\eta} ({}^{I}X)^{I}$, which is given by commutativity (for every $i \in I$) of the following diagram:

Proposition 19

 $(X,(\tau_i)_{i\in I}) \xrightarrow{\eta} FG(X,(\tau_i)_{i\in I})$ is a **CAfSpc** (T_I) -morphism.

Properties of the morphism η

Assumption 20

Given an **X**-object X and a set I, form a coproduct $(X \xrightarrow{\mu_i} {}^I X)_{i \in I}$ in **X** and get a source $(T({}^I X) \xrightarrow{(T\mu_i)^{op}} TX)_{i \in I}$ in **A**. Suppose a family $(\tau_i)_{i \in I}$ of subalgebras of TX is given. Assume the following: for every $i_0 \in I$ and every $\alpha \in \tau_{i_0}$, there is $\gamma \in T({}^I X)$ such that $(T\mu_{i_0})^{op}(\gamma) = \alpha$ and, for every $i \in I$ with $i \neq i_0$, $(T\mu_i)^{op}(\gamma) \in \tau_i$.

Proposition 21

Set $\xrightarrow{\mathcal{P}_A}$ **A** op satisfies Assumption 20 if **A** has nullary operations.

Example 22

The powerset functor **Set** $\xrightarrow{\mathcal{P}}$ **CBAlg**^{op} satisfies Assumption 20.

Relationships between the functors F and G

Theorem 23

There is an adjoint situation $G \dashv F$: Af $Spc(T) \rightarrow CAf Spc(T_I)$.

Proposition 24

If Assumption 20 holds, then the category $\mathsf{AfSpc}(\mathcal{P}_A)$ is (non-concretely) isomorphic to an (initially) reflective subcategory of the category $\mathsf{CAfSpc}(\mathcal{P}_{AI})$, in which "initially" means that every reflection arrow is an initial morphism.

Affine Sierpinski space

Definition 25

In a concrete category C, a C-object S is a *Sierpinski object* provided that for every C-object C, the hom-set C(C,S) is an initial source.

- In the category **Af Spc**(\mathcal{P}_A), Sierpinski object (or *Sierpinski* (*A-)affine space*) is the pair $\mathcal{S}=(|A|,\langle 1_A\rangle)$, where $\langle 1_A\rangle$ is the subalgebra of $A^{|A|}$, which is generated by the identity map 1_A .
- ② In the category **Top**, Sierpinski object is the standard Sierpinski space $S = (\{0, 1\}, \{\emptyset, \{1\}, \{0, 1\}\})$.

Affine spaces Affine versus composite affine Sierpinski object Conclusion References 00000000 0000 0000 0000 0000

Introduction

Composite affine Sierpinski space

Theorem 27

Suppose Assumption 20 holds. If S is a Sierpinski object in AfSpc(T), then FS is a Sierpinski object in $CAfSpc(T_I)$.

To construct a Sierpinski object in the category $CAfSpc(T_I)$, apply the functor F to a Sierpinski object in the category AfSpc(T), which is usually well-known in each concrete case.

An example of composite affine Sierpinski space

In the following, suppose that Assumption 20 holds.

- $S = (|A|, \langle 1_A \rangle)$ is a Sierpinski object in **Af Spc**(\mathcal{P}_A).
- $FS = (A^I, (\tau_i)_{i \in I})$ is a Sierpinski object in **CAfSpc** (\mathcal{P}_{AI}) .
- For every $i \in I$, $(A^I, \tau_i) \xrightarrow{\pi_i} (A, \langle 1_A \rangle)$ is an initial morphism in $\mathbf{AfSpc}(\mathcal{P}_A)$, and, therefore, $\tau_i = (\mathcal{P}_A \pi_i)^{op} (\langle 1_A \rangle) = \langle ((\mathcal{P}_A \pi_i)^{op} 1_A) \rangle = \langle 1_A \circ \pi_i \rangle = \langle \pi_i \rangle$.
- A Sierpinski object in the category **CAf Spc**(\mathcal{P}_{AI}) is therefore $FS = (A^I, (\langle \pi_i \rangle)_{i \in I})$, which is the form of Sierpinski object considered for affine bitopological spaces by R. Noor *et al.*
- In the category **BiTop**, Sierpinski object is the space $S_B = (2 \times 2, \{\emptyset, \{(1,0), (1,1)\}, 2 \times 2\}, \{\emptyset, \{(0,1), (1,1)\}, 2 \times 2\}).$

Final remarks

- Motivated by the study of R. Noor et al., which provided a characterization of Sierpinski object in the category of affine analogues of bitopological spaces of J. C. Kelly, we described Sierpinski object in the category of composite affine spaces.
- We have got a functor from the category of affine spaces to that of composite affine spaces, which preserves Sierpinski object.
- Instead of constructing Sierpinski object in the category of affine bitopological spaces from scratch, just apply our functor to the already available Sierpinski object for affine topological spaces.

Problem 29

Provide an analogous result for the case of composite affine systems.

References I

Affine spaces

J. Adámek, H. Herrlich, and G. E. Strecker, Abstract and Concrete Categories: The Joy of Cats, Dover Publications, 2009.

D. Aerts, E. Colebunders, A. van der Voorde, and B. van Steirteghem, State property systems and closure spaces: a study of categorical equivalence, Int. J. Theor. Phys. 38 (1999), no. 1, 359-385.

Y. Diers, Affine algebraic sets relative to an algebraic theory, J. Geom. **65** (1999), no. 1-2, 54–76.

J. C. Kelly, *Bitopological spaces*, Proc. Lond. Math. Soc. **13** (1963), no. III, 71-89.

E. G. Manes, Algebraic Theories, Springer-Verlag, 1976.

References II

R. Noor, A. K. Srivastava, and S. K. Singh, On Q-bitopological space, Iran. J. Fuzzy Syst. **15** (2018), no. 3, 65–77.

S. E. Rodabaugh, Relationship of Algebraic Theories to Powerset Theories and Fuzzy Topological Theories for Lattice-Valued Mathematics, Int. J. Math. Math. Sci. 2007 (2007), 1-71.

S. E. Rodabaugh, Functorial comparisons of bitopology with topology and the case for redundancy of bitopology in lattice-valued mathematics, Appl. Gen. Topol. 9 (2008), no. 1, 77–108.

A. K. Srivastava, Fuzzy Sierpinski space, J. Math. Anal. Appl. 103 (1984), 103-105.

Thank you for your attention!