An m-domain ring is a ring such that, for every element , there exists a central idempotent such that , and, if is an idempotent such that , then . The multiplicative semigroup of an m-domain ring is a D-semigroup (with the unary operation ).
Given an m-domain ring , we can decompose it into an inverse system of pairwise disjoint right-cancellative D-semigroups with identities over the set of idempotent elements of . In the talk, the following results on this decomposition will be presented.
First, the strong semilattice of D-semigroups obtained from this inverse system is the multiplicative D-semigroup of the ring .
Second, let be an inverse system of pairwise disjoint right-cancellative D-semigroups with identities over some lower semilattice . If the strong semilattice of D-semigroups obtained from the inverse system is the multiplicative D-semigroup of some m-domain ring , then the inverse system is the decomosition of the m-domain ring .